Main Article Content
Abstract
Background: Caffeine (1,3,7 – trimethylxanthine) is a chemical compound that has a psychoactive effect on the central nervous system of the brain. It is obtained from the fruits, leaves and seeds of different plant species.
Objectives: It is widely consumed by millions of people. In addition to other sources, consumption of coffee and energy drink are the major means through which caffeine enters the body.
Methods: While caffeine is well tolerated by some individuals, it also causes some serious pharmacological health issues such as, difficulty in breathing, cardiac conduction anomaly, insomnia, headaches, anxiety, gut dysfunction, diuresis, increased heart rate, increased mental alertness and motor activity.
Results: It was discovered that there is a genetic basis for these different responses or reactions to caffeine.
Conclusions: This paper, therefore, reviews the genetic basis for the different reactions to caffeine and suggested recommendations for proper administration of caffeine to consumers as well as an area for further scientific research.
Keywords
Article Details
Copyright (c) 2023 Dumebi Chidinma Dibie, Tracy Ogochukwu Njideaka, Onyeka Benjamin Onyeukwu
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
- Abebe, B. (2011).Some biochemical compounds in coffee beans and methods developed for their analysis.International Journal of the Physical Sciences,6(28): 6373-6378. doi: 10.5897/IJPS11.486
- Arnaud, M.J. (2011). Pharmacokinetics and metabolism of natural methylxanthines in animal and man.Handbook of Experimental Pharmacology,200:33-91
- Banks, N. F., Tomko, P. M., Colquhoun, R. J., Muddle, T. W., Emerson, S. R. & Jenkins, N. D. (2019). Genetic Polymorphisms in ADORA2A and CYP1A2 Influence Caffeine’s Effect on PostprandialGlycaemia. Scientific Reports, 9(1): 1-9. https://doi.org/10.1038/s41598-019-46931-0
- Barrense-Dias, Y., Berchtold, A., Akre, C., & Surís, C.(2016).Consuming energy drinks at the age of 14 predicted legal and illegal substance use at 16.Acta Paediatrica,105(11):1361-1368.https://doi.org/10.1111/apa.13543
- Bashir, D., Reed-Schrader, E., Olympia, R.P., Brady, J., Rivera, R., Serra,T.andWeber, C. (2016). Clinical Symptoms and Adverse Effects Associated with Energy Drink Consumption in Adolescents. PediatricEmergency Care, 32(11):751-755. doi: 10.1097/PEC.0000000000000703. PMID: 27176902.
- Begas, E., Kouvaras, E., Tsakalof, A., Papakosta, S. & Asprodini, E.K. (2007). In vivo evaluation of CYP1A2, CYP2A6, NAT-2 and xanthine oxidase activities in a Greek population sample by the RP-HPLC monitoring of caffeine metabolic ratios.Biomedical Chromatography,21:190–200.[PubMed][Google Scholar]
- Chaugule, H., Patil, H. Pagariya, S. and Ingle, P. (2019). Extraction of Caffeine. International Journal of Advance Research in Chemical Science,6(9): 1-19.
- Chen, Y., Michalak, M. & Agellon, L. B. (2018). Focus: Nutrition and Food Science: Importance of Nutrients and Nutrient Metabolism on Human Health. The Yale Journal of Biology and Medicine, 91(2): 95-103. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6020734/
- Chirasani, V.R., Pasek, D.A. and Meissner, G. (2021). Structural and Functional Interactions between the Ca 2+ -,ATP-, and Caffeine-Binding Sites of Skeletal Muscle Ryanodine Receptor (RyR1). J. Biol. Chem.297, 101040. [CrossRef] [PubMed]
- Cornelis, M.C., El-Sohemy, A., Kabagambe, E.K. & Campos, H. (2006). Coffee, CYP1A2 Genotype, and Risk of Myocardial Infarction.Journal of the American Medical Association, ,295(10):1135–1141. doi:10.1001/jama.295.10.1135
- Denden, S., Bouden, B., Khelil, A.H. Chibani, J.B. & Hamdaoui, M.H. (2016). Gender and ethnicity modify the association between the CYP1A2 rs762551 polymorphism and habitual coffee intake: evidence from a meta-analysis.Genetic and Molecular Research, 15(2).
- dePaula, J. and Farah, A. (2019). Caffeine Consumption through Coffee: Content in the Beverage, Metabolism, Health Benefits and Risks. Beverages, 5(37): 1-50; doi:10.3390/beverages5020037.
- Eskelinen, M.H. & Kivipelto, M. (2010). Caffeine as a protective factor in dementia and Alzheimer’s disease. Journal of Alzheimer's Disease, 20: 167-174; DOI 10.3233/JAD-2010-1404
- Fredholm, B.B., Yang, J. and Wang, Y. (2017). Low, but Not High, Dose Caffeine Is a Readily Available Probe for Adenosine Actions. Mol. Asp. Med. 55, 20–25. [Cross Ref]Fulton, J.
- L., Dinas, P.C., Carrillo, A.E., Edsall, J.R., Ryan, E.J. & Ryan, E.J. (2018). Impact of Genetic Variability on Physiological Responses to Caffeine in Humans: A Systematic Review.Nutrients, 10(10):1373. doi: 10.3390/nu10101373. PMID: 30257492; PMCID: PMC6212886.
- Gunes, A. & Dahl, M. L. (2008). Variation in CYP1A2 activity and its clinical implications: influence of environmental factors and genetic polymorphisms. pharmacogenomics, 9(5) https://doi.org/10.2217/14622416.9.5.625.
- Heller, F. (2013). Genetics/genomics and drug effects.Acta Clinical Belgical,68:77–80.[PubMed][Google Scholar]
- Huang, Z., Urade, Y. & Hayaishi, O. (2011). Role of Adenosine in the Regulation of Sleep.Current Topics in Medicinal Chemistry, 11(8): 1047-1057. https://doi.org/10.2174/156802611795347654
- Institute of Medicine. (2014) Caffeine in Food and Dietary Supplements: Examining Safety: Workshop Summary. Washington, DC: The National Academies Press. https://doi.org/10.17226/18607
- Koonrungsesomboon, N., Khatsri, R., Wongchompoo, P. and Teekachunhatean, S. (2018). The impact of genetic polymorphisms on CYP1A2 activity in humans: a systematic review andmeta-analysis.Pharmacogenomics J.18(6): 760-768. doi: 10.1038/s41397-017-0011-3. Epub 2017 Dec 27. PMID: 29282363.
- Kot, M. & Daniel, W.A. (2008a). Caffeine as a marker substrate for testing cytochrome P450 activity in human and rat.Pharmacology Report,60:789–797.[PubMed][Google Scholar]
- Kot, M. & Daniel, W.A. (2008b). The relative contribution of human cytochrome P450 isoforms to the four caffeine oxidation pathways: anin vitro comparative study with cDNA expressed P450s including CYP2C isoforms.Biochemical Pharmacology,76:543–551.[PubMed][Google Scholar]
- Lin, J., Schyschka, L., Muhl-Benninghaus, R., Neumann, J., Hao, L. Nussler, N., Dooley, S., Liu, L. Stockle, U., Nussler, A.K. and Ehnert, S. (2012). Comparative analysis of phase I and II enzyme activities in 5 hepatic cell lines identifies Huh-7 and HCC-T cells with the highest potential to study drug metabolism.Archives of Toxicology,86:87–95.[PubMed][Google Scholar]
- Mitchell, D.C., Hockenberry, J., Teplansky, R., Hartman, T.J., (2015). Assessing dietary exposure to caffeine from beverages in the U.S. population using brand-specific versus category-specific caffeine values. Food and Chemical Toxicology, 80:247-252. http://dx.doi.org/10.1016/j.fct.2015.03.024
- Nehlig, A. (2018). Interindividual differences in caffeine metabolism and factors driving caffeine consumption.Pharmacology Review,70(2): 384-411.
- Osz, B.E., Jîtc ̆a, G.S., tef ̆anescu, R.E., Puscas, A., Tero-Vescan, A. and Vari, C.E. (2022). Caffeine and Its Antioxidant Properties—It Is All about Dose and Source. Int. J. Mol. Sci. 23, 13074. https://doi.org/10.3390/ijms232113074
- Renda, G., Zimarino, M., Antonucci, I., Tatasciore, A., Ruggieri, B., Bucciarelli, T., Prontera, T., Stuppia, L. & De Caterina, R. (2012). Genetic determinants of blood pressure responses to caffeine drinking.American Journal of Clinical Nutrition,95(1):241-248.
- Retey, J.V., Adam, M., Khatamic, R., Luhmann, U.F.O., Jung, H.H., Berger, W. & Landolt, H.P. (2007). A genetic variation in the adenosine A2A receptor gene (ADORA2A) contributes to individual sensitivity to caffeine effects on sleep.Clinical Pharmacology and Therapeutics, 81:692–698.
- Richards, G. & Smith, A.P. (2016). A review of energy drinks and mental health, with a focus on stress, anxiety, and depression. Journal of Caffeine Research, 6:49-63. http:// dx.doi.org/10.1089/jcr.2015.0033.
- Rodak, K., Kokot, I. and Kratz, E.M. (2021). Caffeine as a Factor Influencing the Functioning of the Human Body—Friend or Foe?Nutrients,13, 3088. https://doi.org/10.3390/nu13093088 .
- Sebastião, A.M. & Ribeiro, J.A. (2009).Handbook of Experimental Pharmacology.Berlin, Heidelberg: Springer, Adenosine receptors and the central nervous system. 193: 471–534. [PubMed][Google Scholar]Temple, J.
- L., Ziegler, A.M., Martin, C. & De Wit, H. (2015). Subjective responses to caffeine are influenced by caffeine dose, sex and pubertal stage. Journal of Caffeine Research, 5(4):167-175.PubMed|Google Scholar
- Wang, B. & Zhou, S.F. (2009). Synthetic and natural compounds that interact with human cytochrome P450 1A2 and implications in drug development.Current Medicinal Chemistry, 16:4066–4218.[PubMed][Google Scholar]
- Wright, G.A., Baker, D.D., Palmer, M.J., Stabler, D., Mustard, J.A., Power, E.F., Borland, A.M. & Stevenson, P.C. (2013). Caffeine in floral nectar enhances a pollinator's memory of reward. Science, 339:1202-1204. http://dx.doi.org/10.1126/science.1228806
- Yang, A. & Palmer, A.A (2010). Genetics of caffeine consumption and responses to caffeine.Psychopharmacology, 211(3):245-257.
- Zhou, S.F., Yang, L.P., Zhou, Z.W., Liu, Y.H. & Chan, E. (2009). Insights into the substrate specificity, inhibitors, regulation, and polymorphisms and the clinical impact of human cytochrome P450 1A2.Journal of the American Association of Pharmaceutical Scientist,11:481–494
References
Abebe, B. (2011).Some biochemical compounds in coffee beans and methods developed for their analysis.International Journal of the Physical Sciences,6(28): 6373-6378. doi: 10.5897/IJPS11.486
Arnaud, M.J. (2011). Pharmacokinetics and metabolism of natural methylxanthines in animal and man.Handbook of Experimental Pharmacology,200:33-91
Banks, N. F., Tomko, P. M., Colquhoun, R. J., Muddle, T. W., Emerson, S. R. & Jenkins, N. D. (2019). Genetic Polymorphisms in ADORA2A and CYP1A2 Influence Caffeine’s Effect on PostprandialGlycaemia. Scientific Reports, 9(1): 1-9. https://doi.org/10.1038/s41598-019-46931-0
Barrense-Dias, Y., Berchtold, A., Akre, C., & Surís, C.(2016).Consuming energy drinks at the age of 14 predicted legal and illegal substance use at 16.Acta Paediatrica,105(11):1361-1368.https://doi.org/10.1111/apa.13543
Bashir, D., Reed-Schrader, E., Olympia, R.P., Brady, J., Rivera, R., Serra,T.andWeber, C. (2016). Clinical Symptoms and Adverse Effects Associated with Energy Drink Consumption in Adolescents. PediatricEmergency Care, 32(11):751-755. doi: 10.1097/PEC.0000000000000703. PMID: 27176902.
Begas, E., Kouvaras, E., Tsakalof, A., Papakosta, S. & Asprodini, E.K. (2007). In vivo evaluation of CYP1A2, CYP2A6, NAT-2 and xanthine oxidase activities in a Greek population sample by the RP-HPLC monitoring of caffeine metabolic ratios.Biomedical Chromatography,21:190–200.[PubMed][Google Scholar]
Chaugule, H., Patil, H. Pagariya, S. and Ingle, P. (2019). Extraction of Caffeine. International Journal of Advance Research in Chemical Science,6(9): 1-19.
Chen, Y., Michalak, M. & Agellon, L. B. (2018). Focus: Nutrition and Food Science: Importance of Nutrients and Nutrient Metabolism on Human Health. The Yale Journal of Biology and Medicine, 91(2): 95-103. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6020734/
Chirasani, V.R., Pasek, D.A. and Meissner, G. (2021). Structural and Functional Interactions between the Ca 2+ -,ATP-, and Caffeine-Binding Sites of Skeletal Muscle Ryanodine Receptor (RyR1). J. Biol. Chem.297, 101040. [CrossRef] [PubMed]
Cornelis, M.C., El-Sohemy, A., Kabagambe, E.K. & Campos, H. (2006). Coffee, CYP1A2 Genotype, and Risk of Myocardial Infarction.Journal of the American Medical Association, ,295(10):1135–1141. doi:10.1001/jama.295.10.1135
Denden, S., Bouden, B., Khelil, A.H. Chibani, J.B. & Hamdaoui, M.H. (2016). Gender and ethnicity modify the association between the CYP1A2 rs762551 polymorphism and habitual coffee intake: evidence from a meta-analysis.Genetic and Molecular Research, 15(2).
dePaula, J. and Farah, A. (2019). Caffeine Consumption through Coffee: Content in the Beverage, Metabolism, Health Benefits and Risks. Beverages, 5(37): 1-50; doi:10.3390/beverages5020037.
Eskelinen, M.H. & Kivipelto, M. (2010). Caffeine as a protective factor in dementia and Alzheimer’s disease. Journal of Alzheimer's Disease, 20: 167-174; DOI 10.3233/JAD-2010-1404
Fredholm, B.B., Yang, J. and Wang, Y. (2017). Low, but Not High, Dose Caffeine Is a Readily Available Probe for Adenosine Actions. Mol. Asp. Med. 55, 20–25. [Cross Ref]Fulton, J.
L., Dinas, P.C., Carrillo, A.E., Edsall, J.R., Ryan, E.J. & Ryan, E.J. (2018). Impact of Genetic Variability on Physiological Responses to Caffeine in Humans: A Systematic Review.Nutrients, 10(10):1373. doi: 10.3390/nu10101373. PMID: 30257492; PMCID: PMC6212886.
Gunes, A. & Dahl, M. L. (2008). Variation in CYP1A2 activity and its clinical implications: influence of environmental factors and genetic polymorphisms. pharmacogenomics, 9(5) https://doi.org/10.2217/14622416.9.5.625.
Heller, F. (2013). Genetics/genomics and drug effects.Acta Clinical Belgical,68:77–80.[PubMed][Google Scholar]
Huang, Z., Urade, Y. & Hayaishi, O. (2011). Role of Adenosine in the Regulation of Sleep.Current Topics in Medicinal Chemistry, 11(8): 1047-1057. https://doi.org/10.2174/156802611795347654
Institute of Medicine. (2014) Caffeine in Food and Dietary Supplements: Examining Safety: Workshop Summary. Washington, DC: The National Academies Press. https://doi.org/10.17226/18607
Koonrungsesomboon, N., Khatsri, R., Wongchompoo, P. and Teekachunhatean, S. (2018). The impact of genetic polymorphisms on CYP1A2 activity in humans: a systematic review andmeta-analysis.Pharmacogenomics J.18(6): 760-768. doi: 10.1038/s41397-017-0011-3. Epub 2017 Dec 27. PMID: 29282363.
Kot, M. & Daniel, W.A. (2008a). Caffeine as a marker substrate for testing cytochrome P450 activity in human and rat.Pharmacology Report,60:789–797.[PubMed][Google Scholar]
Kot, M. & Daniel, W.A. (2008b). The relative contribution of human cytochrome P450 isoforms to the four caffeine oxidation pathways: anin vitro comparative study with cDNA expressed P450s including CYP2C isoforms.Biochemical Pharmacology,76:543–551.[PubMed][Google Scholar]
Lin, J., Schyschka, L., Muhl-Benninghaus, R., Neumann, J., Hao, L. Nussler, N., Dooley, S., Liu, L. Stockle, U., Nussler, A.K. and Ehnert, S. (2012). Comparative analysis of phase I and II enzyme activities in 5 hepatic cell lines identifies Huh-7 and HCC-T cells with the highest potential to study drug metabolism.Archives of Toxicology,86:87–95.[PubMed][Google Scholar]
Mitchell, D.C., Hockenberry, J., Teplansky, R., Hartman, T.J., (2015). Assessing dietary exposure to caffeine from beverages in the U.S. population using brand-specific versus category-specific caffeine values. Food and Chemical Toxicology, 80:247-252. http://dx.doi.org/10.1016/j.fct.2015.03.024
Nehlig, A. (2018). Interindividual differences in caffeine metabolism and factors driving caffeine consumption.Pharmacology Review,70(2): 384-411.
Osz, B.E., Jîtc ̆a, G.S., tef ̆anescu, R.E., Puscas, A., Tero-Vescan, A. and Vari, C.E. (2022). Caffeine and Its Antioxidant Properties—It Is All about Dose and Source. Int. J. Mol. Sci. 23, 13074. https://doi.org/10.3390/ijms232113074
Renda, G., Zimarino, M., Antonucci, I., Tatasciore, A., Ruggieri, B., Bucciarelli, T., Prontera, T., Stuppia, L. & De Caterina, R. (2012). Genetic determinants of blood pressure responses to caffeine drinking.American Journal of Clinical Nutrition,95(1):241-248.
Retey, J.V., Adam, M., Khatamic, R., Luhmann, U.F.O., Jung, H.H., Berger, W. & Landolt, H.P. (2007). A genetic variation in the adenosine A2A receptor gene (ADORA2A) contributes to individual sensitivity to caffeine effects on sleep.Clinical Pharmacology and Therapeutics, 81:692–698.
Richards, G. & Smith, A.P. (2016). A review of energy drinks and mental health, with a focus on stress, anxiety, and depression. Journal of Caffeine Research, 6:49-63. http:// dx.doi.org/10.1089/jcr.2015.0033.
Rodak, K., Kokot, I. and Kratz, E.M. (2021). Caffeine as a Factor Influencing the Functioning of the Human Body—Friend or Foe?Nutrients,13, 3088. https://doi.org/10.3390/nu13093088 .
Sebastião, A.M. & Ribeiro, J.A. (2009).Handbook of Experimental Pharmacology.Berlin, Heidelberg: Springer, Adenosine receptors and the central nervous system. 193: 471–534. [PubMed][Google Scholar]Temple, J.
L., Ziegler, A.M., Martin, C. & De Wit, H. (2015). Subjective responses to caffeine are influenced by caffeine dose, sex and pubertal stage. Journal of Caffeine Research, 5(4):167-175.PubMed|Google Scholar
Wang, B. & Zhou, S.F. (2009). Synthetic and natural compounds that interact with human cytochrome P450 1A2 and implications in drug development.Current Medicinal Chemistry, 16:4066–4218.[PubMed][Google Scholar]
Wright, G.A., Baker, D.D., Palmer, M.J., Stabler, D., Mustard, J.A., Power, E.F., Borland, A.M. & Stevenson, P.C. (2013). Caffeine in floral nectar enhances a pollinator's memory of reward. Science, 339:1202-1204. http://dx.doi.org/10.1126/science.1228806
Yang, A. & Palmer, A.A (2010). Genetics of caffeine consumption and responses to caffeine.Psychopharmacology, 211(3):245-257.
Zhou, S.F., Yang, L.P., Zhou, Z.W., Liu, Y.H. & Chan, E. (2009). Insights into the substrate specificity, inhibitors, regulation, and polymorphisms and the clinical impact of human cytochrome P450 1A2.Journal of the American Association of Pharmaceutical Scientist,11:481–494